

Excel VBA 365 Made Easy
by

Dr. Liew Voon Kiong

Disclaimer

Excel VBA 365 Made Easy is an independent publication and is not affiliated with, nor has it been

authorized, sponsored, or otherwise approved by Microsoft Corporation.

Trademarks

Microsoft, Visual Basic, Excel and Windows are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

Liability

The purpose of this book is to provide basic guidelines for people interested in Excel VBA 365

programming. Although every effort and care has been taken to make the information as accurate as

possible, the author shall not be liable for any error, harm or damage arising from using the

instructions given in this book.

Copyright© Liew Voon Kiong 2020. All rights reserved. No part of this book may be reproduced or

transmitted in any form or by any means, without permission in writing from the author.

Acknowledgement

I would like to express my sincere gratitude to many people who have made their contributions in

one way or another to the successful publication of this book.

My special thanks go to my children Xiang, Yi and Xun. My daughter Xiang edited this book while my

sons Yi and Xun contributed their ideas and even wrote some of the sample programs for this book.

I would also like to appreciate the support provided by my beloved wife Kim Huang and my youngest

daughter Yuan. I would also like to thank the millions of visitors to my Excel VBA Tutorial website at

https://excelvbatutor.com/​ for their support and encouragement.

About the Author

Dr. Liew Voon Kiong holds a bachelor’s degree in Mathematics, a master’s degree in Management

and a doctorate in Business Administration. He has been involved in Visual Basic programming for

more than 30 years. He created the popular online Visual Basic Tutorial at ​www.vbtutor.net which

has attracted millions of visitors since 1996. It has consistently been one of the highest ranked

Visual Basic websites.

Dr. Liew is also the author of the Visual Basic Made Easy series, which includes ​Excel VBA Made

Easy​, ​Visual Basic 6 Made Easy, Visual Basic 2008 Made Easy, Visual Basic 2010 Made Easy,

Visual Basic 2013 Made Easy, Visual Basic 2015 Made Easy, Visual Basic 2017 Made Easy ​and

Visual Basic 2019 Made Easy . ​Besides the VB books, he has also published ​JavaScript Made

Easy​, ​JavaScript & JQuery Made Easy and HTML & CSS Made Easy​. Dr. Liew’s books have

been used in high school and university computer science courses all over the world.

https://excelvbatutor.com/
http://www.vbtutor.net/

TABLE OF CONTENTS

Chapter 1 Introduction to Excel VBA 365 17

1.1 The Concept of Excel VBA 17

1.2 The Visual Basic Editor in MS Excel 365 18

1.2.1 Building Excel VBA 365 using the Controls. 19

Example 1.1 Displaying a Message 22

Example 1.2 Populates Cells with Text and Values 24

1.2.2 Building Excel VBA 365 using the Visual Basic Editor 25

1.2.3 Creating Macros 29

Example 1.3 Creating a Macro 33

Example 1.4 Creating a Salary Calculator 37

Example 1.5 Creating the Macro that Add Two Numbers 38

Example 1.6 A Macro that Populates Cells using the For…Next Loop 40

Example 1.7 A Macro that Populates the Cells with Characters using the Chr() Function.

41

1.3 The Excel VBA 365 Code 41

Example 1.8 Populating a Cell using the Value Property of Range 42

Example 1.9 Coloring the Cells with the Color Property 42

Example 1.10 Adding Numbers Using the Do... Loop 43

Example 1.11 A Macro that Accepts Inputs and Add Numbers 44

1.4 Errors Handling 45

1.4.1 Writing the Errors Handling Code 45

Example 1.12 Catching Error for Invalid Division 46

Example 1.13 Nested Errors Handling 46

Chapter 2 Working with Variables 49

2.1 The Concept of Variables 49

2.2 Variable Names 49

2.3 Declaring Variables 50

2.2.1 Numeric Data Types 50

2.2.2 Non-numeric Data Types 51

Example 2.1 Declaration of Different Data Types 51

Example 2.2 Creating a Salary Calculator Using If… Then…Else 52

2.2 Option Explicit 54

Example 2.3 Using Option Explicit to Catch Typo Errors 54

2.3 Assigning Values to the Variables 56

2.4 Performing Arithmetic Operations 56

Example 2.4 Compute Examination Results 57

Example 2.5 Concatenation of Strings 58

2.5 Arrays 60

2.5.1 Declaring an Array 60

2.5.2 One-Dimensional Array 60

Example 2.6 Array of Names 60

Example 2.7 Declare Arrays in a Single Line 62

2.5.3 Two-Dimensional Array 64

Example 2.8 Tracking the Performance of Salespersons 65

Chapter 3 Message box and Input Box 67

3.1 The MsgBox () Function 67

Example 3.1 Using the Name Constant vbOKCancel 69

Example 3.2 Separating the Message into Three Lines using the Chr() Function 70

Example 3.3 A Number Guessing Game 73

3.2 The InputBox() Function 75

Example 3.4 Using InputBox 76

Chapter 4 Using If...Then…Else 78

4.1 Conditional Operators 78

4.2 Logical Operators 79

4.3 Using If...Then...ElseIf… Else 79

Example 4.1 Comparing Two Numbers 79

Example 4.2 Computing the Examination Grades 81

Example 4.3 The Use of the Not Operator 84

Chapter 5 Looping 85

5.1 For…Next Loop 85

5.1.1 The Single For…Next Loop 85

Example 5.1 Populating Cells with Numbers 85

Example 5.2 Populating Alternative Cells 86

Example 5.3 Early Termination of Program 87

5.1.2 The Nested For…Next Loop 88

Example 5.4 Populating a Range of Cells 88

Example 5.5 Analyzing Exam Results 89

5.2 The Do…Loop 91

Example 5.6 A Counter 92

Example 5.7 Another Counter 93

Example 5.8 Decreasing Numbers 94

Example 5.9 Decreasing Numbers 94

Example 5.10 Displaying Numbers 95

Example 5.11 Formatting Contents using with Selection 96

Example 5.12 Prime Number Tester 97

5.3 The While…Wend Loop 99

Example 5.13 Arithmetic Progression 100

Example 5.14 Exiting a While...Wend Loop 101

Example 5.15 A Number Guessing Game 103

Chapter 6 Select Case...End Select 106

Example 6.1 Processing Student Grades 106

Example 6.2 Using Case Is 108

Example 6.3 Processing Grades 109

Chapter 7: Excel VBA 365 Objects 111

7.1: Objects 111

7.2: Properties and Methods 112

7.2.1 Properties 112

Example 7.1 The Value Property 113

7.2.2 Methods 115

a) The Count method 115

Example 7.2 The Count Property 115

b) The ClearContents Method 115

Example 7.3 Clearing Contents 115

c) The ClearFormats​ ​Method 118

Example 7.4 Clearing Format 118

d) The Clear Method 119

Example 7.5 Select Range and Clear Contents 119

e) The Select Method 119

Example 7.6 The Select Method 120

Example 7.7 Selecting a Range of Cells 120

Example 7.8 Select and Clear 120

f) The Autofill Method 120

Example 7.9 Autofill a Range 122

Example 7.10 Set the Source and Destination 123

Example 7.11 Autofill Weekdays 125

Example 7.12 Select and Clear Contents by the User 125

Chapter 8: The Workbook Object 127

8.1 Workbook Properties 127

8.1.1 The Name Property 127

Example 8.1 Displaying the Workbook Name 127

8.1.2 The Path Property 128

Example 8.2 Showing the Path of the workbook 128

Example 8.3 Showing the Path and Name of a Workbook 129

8.2 The Workbook Methods 130

8.2.1 The Save Method 130

Example 8.4 Save Workbook 130

8.2.2 The SaveAs Method 131

Example 8.5 SaveAs Method 131

8.2.3 The Open Method 132

Example 8.6 Opening a File 133

8.2.4 The Close Method 133

Example 8.7 Closing a File 133

Chapter 9 The Worksheet Object 134

9.1 Worksheet Properties 134

9.1.1 The Name Property 134

Example 9.1 Return a Worksheet Name 134

9.1.2 The Count Property 135

Example 9.3 Count Number of Columns 136

Example 9.4 Count Number of Rows 136

9.2 Worksheet Methods 137

9.2.1 The Add Method 137

Example 9.5 Add a New Worksheet 137

9.2.2 The Delete Method 137

Example 9.6 Delete a Worksheet 138

9.2.3 The Select Method 138

Example 9.7 Select a Worksheet 138

Example 9.8 Select a Cell 138

Example 9.9 Select a Range of Cells 138

Example 9.10 Select a Column of a Worksheet 139

Example 9.11 Select a Row of a worksheet 139

9.2.4 The Copy and Paste Method 139

Example 9.12 Copy and Paste 139

Example 9.13 Copy and Paste Contents 140

Chapter 10: The Range Object 141

10.1 Range Properties 141

10.1.1 Formatting 141

Example 10.1 Formatting a Range of Cells 142

Example 10.2 Using ColorIndex 142

10.1.2 The Formula Property 143

Example 10.3 Using the Formula Property 143

10.1.3 Built-in Formulas 144

Example 10.4 Using the Average Formula 144

Example 10.5: Using the Mode Formula 144

Example 10.6: Using the Median Formula 145

Example 10.7 Using the Interior and Color Properties 146

10.2 Range Methods 146

10.2.1 The Autofill Method 147

Example 10.8 Using the AutoFill Method 147

10.2.2 Select, Copy and Paste Methods 147

Example 10.9 Select, Copy and Paste 147

10.2.3 Copy and PasteSpecial Methods 147

Example 10.10 Using the Pastespecial Method 148

Example 10.11 PasteValues and PasteFormuas Methods 149

10.2.4 The Find Method 149

Example 10.12 Search for a Name 150

Example 10.12 Search for a Name in a Range 153

Example 10.13 Search for a Specific Value in a Range 154

Example 10.14 Search for a Specific Value and Replace with New Value 156

Chapter 11 Excel VBA Controls 158

11.1 Check Box 159

Example 11.1 Using the Check Box 159

Example 11.2 Tracking Which Check Box(es) Was(were) Checked 160

Example 11.3 A Shopping Cart 162

11.2 Text Box 164

Example 11.4 Using the Text Box 164

11.3 Option Button 165

Example 11.5 Using the Option Buttons 165

Example 11.6 Using If…Then…Else and the Option Button 166

Example 11.7 Changing the Color of the Font 167

11.4 List Box 168

Example 11.8 Adding Items to a List Box using the AddItem Method 169

11.5 Combo Box 170

Example 11.9 Adding Items to a Combo Box 170

11.6 Toggle Button 172

Example 11.10 Using the Toggle Button 172

11.7 Spin Button 172

Example 11.11 Increase Value Using the Spin Button 172

11.8 Scrollbar 175

Example 11.12 Increase Value Using the Scrollbar 175

11.9 Slider 176

Chapter 12 Functions 179

12.1 The Concept of Functions 179

12.2 Types of Functions 179

12.2 Built-In Functions 179

Example 12.1 Generating a Sales Report 180

12.3 User-Defined Functions 181

Example 12.2 Creating the Formula to Calculate the Area of a Triangle 181

Example 12.3 Compute Grades 185

Example 12.4 Calculate Commissions 187

12.4 Passing variables by reference and by Value in a Function 189

Example 12.5 Demonstrate ByRef and ByVal 189

Chapter 13 Sub Procedures 192

Example 13.1 Create a Font Resizing Sub Procedure 192

Example 13.2 Changing the Font Size Based on the User's Input 194

Example 13.3 Change Font Size 194

Example 13.4 Show a Hidden Text 194

Example 13.5 Buy Decision Sub Procedure 197

Chapter 14 String Handling Functions 199

14.1 InStr 199

14.2. Left 199

14.3. Right 200

14.4. Mid 200

14.5. Len 201

Example 14.1 Executing Several String Functions 201

Chapter 15 Date and Time Functions 203

15.1 Using the Now () Function 203

Example 15.1 Using Several Time and Date Formatting Functions 204

15.2 Date and Time Functions 205

Example 15.2 Usage of Date and Time Functions 205

15.3 DatePart Function 206

Example 15.3 Using the DatePart Function 207

15.4 Adding and Subtracting Dates 208

Example 15.4 Subtracting Years 209

Chapter 16 UseForm 211

16.1 Keyboard Events 212

Example 16.1 Testing the Keyboard 212

Example 16.2 Identify which Key was Pressed 215

16.2 Mouse Events 215

Example 16.3 MouseDown Event 215

Example 16.4 Importing Data from a Worksheet to a List Box 219

Example 16.5 Performing Calculation 221

Example 16.6 Web Browser 222

Chapter 17 Working with Files 227

17.1 Application.GetOpenFilename method 227

Example 17.1 Opening a File 227

17.2 Application.GetSaveAsFilename method 229

Example 17.2 Saving a File 229

17.3 Creating a Text File 230

Example 17.3 Creating a Text file 231

17.4 Reading a File 235

Chapter 18 Class Modules 237

18.1 Creating a Class Module 237

Example 18.1 The BMI Calculator 239

Example 18.2 Grades Calculator 241

Example 18.3 Future Value Calculator 242

18.2 Class Module Properties 244

Example 18.4 The ATM Machine 244

Example 18.5 The Decision-Making App 249

Example 18.6 A Virtual Keyboard 252

Example 18.7 Grades Calculator 256

Chapter 19 Drawing Charts 263

Chapter 20 Dealing with Shapes 269

Example 20.1 Drawing a Hexagon Shape 269

Example 20.2 Manipulating the Color and Transparency 270

Example 20.3 Drawing Shapes 272

Example 20.4 Adding Glow 273

Example 20.5 Declaring Shapes 275

Example 20.6 Creating 3-D Effect 277

Example 20.7 Adding Text to a Shape 279

Chapter 21 Interacting with Database 281

21.1 Working with Microsoft Access Database 281

Example 21.1 Importing Data from Access Database 282

L,21.2 Building a Data Entry Form 285

Example 21.2 Designing a Data Entry Form 286

Chapter 22 Printing 290

22.1 The Basic Syntax 290

22.2 Printing a Particular Worksheet 290

22.3 Printing a Specific Page Range 290

22.4 Printing Several Copies 291

Example 22.1 Printing Several Copies 291

22.5 Print Preview 292

Example 22.2 Print Pryeview 292

Example 22.3 Dialog to Let the User to Continue or Stop Printing 294

22.6 Print a Selected Range 295

Example 22.4 Print a Selected Range 295

Example 1 BMI Calculator 302

Example 2 Financial Calculator 304

Example 3 Investment Calculator 307

Example 4 Prime Number Tester 309

Example 5 Selective Summation 311

Example 6 Excel VBA 365 Windows Media Player 313

Example 7 Animation 319

Example 8 Amortization Calculator 322

Example 9 Boggle 325

Example 10 Calculator 327

Example 11 Scientific Calculator 336

Example 12 Dice 341

Example 13 Geometric Progression 345

Example 14 Password Cracker 348

Example 15 Digital Slot Machine 351

Example 16 Professional Slot Machine 354

Example 17 Quadratic Equation Solver 361

Example 18 Simple Harmonic Motion 365

Example 19 Simultaneous Equation 368

Example 20 Star War 370

Example 21 Stock Trading 376

Example 23 Payback Period Calculator 382

Example 24 Depreciation Calculator 385

Example 25 Non-Linear Simultaneous Equation Solver 388

Example 26 Pythagoras Theorem 391

Example 27 Factors Finder 394

Example 28 ​Loan Payments Calculator 397

Index 400

Chapter 1 Introduction to Excel VBA 365

This book is based on the latest Microsoft Excel, which is one of the apps of Microsoft Office 365;

hence I named this book Excel VBA 365 Made Easy. All the Excel VBA code examples in this book

have been tested in Microsoft Excel 365 and proven to be bugs free, therefore you may try them out

in your own settings. Although the examples are based on MS Excel 365, they should be workable in

older versions of MS Excel because the syntaxes are based largely on Visual Basic 6.

1.1 The Concept of Excel VBA

VBA stands for Visual Basic for Applications. It is an ​event-driven​ programming language ​Visual

Basic​ embedded inside ​Microsoft Office​ applications like Microsoft Excel, Microsoft Word, Microsoft

PowerPoint and more. By running Visual Basic within the Microsoft Office applications, we can build

customized functions and macros to enhance the capabilities of those applications. Besides that, we

can build VBA macros that automates processes in the Microsoft Office applications.

Among the Visual Basic applications, Microsoft Excel VBA 365 is the most popular. There are many

reasons why we should learn VBA for Microsoft Excel, one of the reasons is you can understand the

fundamentals of Visual Basic programming within the MS Excel environment, without having to

purchase a copy of Microsoft Visual Basic software. Another reason is by learning Excel VBA; you

can build custom-made functions to complement the built-in formulas and functions of Microsoft

Excel.

Although MS Excel has numerous built-in formulas and functions, it is still insufficient to cater for

many complex calculations and applications. This book was written in such a way that you can learn

VBA for MS Excel from scratch, and everyone shall be able to master it in a short time! Basically,

Excel VBA code is created using Visual Basic, therefore, its syntaxes remain largely the same for

every version of Microsoft Excel. Although this book is based on MS Excel 365, you may apply it in

older versions of MS Excel.

http://en.wikipedia.org/wiki/Event-driven_programming
http://en.wikipedia.org/wiki/Visual_Basic
http://en.wikipedia.org/wiki/Visual_Basic
http://en.wikipedia.org/wiki/Microsoft_Office

1.2 The Visual Basic Editor in MS Excel 365

To create VBA applications in Microsoft Excel 365, you must own a copy of Microsoft office 365 that

comes with the basic package comprising Microsoft Word, Microsoft PowerPoints, Microsoft Excel,

Microsoft Access and more. If you have already owned a copy of Microsoft Office 365, proceed to

program Excel VBA by launching Microsoft Excel 365. Figure 1.1 shows the initial Workbook of

Microsoft Excel 365.

Figure 1.1 Microsoft Excel 365 workbook

Next, click on the Developer tab to access the Developer window, the environment for building Excel

365 Visual Basic applications. In the Developer environment, you may play with all kinds of tools and

apps that you can use to develop VBA and macros.

There are three ways to start programming Excel VBA, by placing controls on the worksheet and

double click it to enter the Visual Basic Editor. The second way is to enter the Visual Basic Editor

directly by clicking the View Code button or the Visual Basic button in the Developer environment. In

addition, you can also program VBA by creating macros.

1.2.1 Building Excel VBA 365 using the Controls.

There are two categories of controls, Form controls and ActiveX controls. ​Form controls are built into

Excel whereas ActiveX controls are loaded separately. Though Form controls are simpler to

use, ActiveX​ ​controls allow for more flexible design.

To use the controls, navigate to the Developer tab then click on the Insert button to access the

ActiveX controls and Form Controls, as shown in Figure 1.2.

Figure 1.2 ​Form and ActiveX Controls

Let us start with the command button. To place a command button on the MS Excel worksheet, click

on the command button under ActiveX controls and draw it on the worksheet, as shown in Figure

1.3. Notice that the Developer environment is in the Design Mode at this stage.

Figure 1.3​ The Command Button in the Design Mode

At this stage, you might want to customize the command button by changing some of its properties.

To access the properties, right-click the command button and select the Properties option to launch

the Properties window, as show in Figure 1.4.

Figure 1.4 The Properties Window

You may change its name to any name you wish but for learning purposes I suggest you change its

name to Cmd_ShowMsg and its Caption to Show Message, as shown in Figure 1.5.

Notice that the caption on the command button has changed to Show Message.

Figure 1.5

Next, click on the command button to enter the Visual Basic Editor (We will use the short form VBE

every now and then in the book). In the VBE, Enter the statements as shown in Example 1.1, as

follows:

Example 1.1 Displaying a Message

Private Sub Cmd_ShowMsg_Click()

MsgBox ("Welcome to Excel VBA 365 Programming")

End Sub

Figure 1.6​ The Visual Basic Editor

To run the VBA program, quit the VBE and the Design Mode and then click on the command
button. A message box will appear, as shown in Figure 1.7

Figure 1.7

The next example involved the use of the Range object and its property Value, as well as the cells
object. The program also introduces a ​For...Next​ loop which you are already familiar if you
have been programming in Visual Basic 6.

Example 1.2 Populates Cells with Text and Values

Private Sub Cmd_Compute_Click()

 Range("A1:D4").Value = "Excel VBA 365 "

 Range("A5:D5").Value = 100

 Range("A6:D6").Value = 50

For i = 1 To 4

 Cells(7, i) = Cells(5, i) + Cells(6, i)

Next

End Sub

The first statement will populate the cells from the range cell A1 to cell D4 with the phrase "Excel

VBA 365''. The second statement populates the cells from the range cell A5 to cell D5 with the value

of 100. The third statement populates the cells from the range cell A6 to cell D6 with the value of 50.

The ​For…Loop​ statement adds the corresponding values of row 5 and row 6 and display them in

row 7. Running the VBA produces the output UI as shown in Figure 1.8.

Figure 1.8

1.2.2 ​Building Excel VBA 365 using the Visual Basic Editor

To access Visual Basic Editor directly, click on Visual Basic or View Code in the Developer

environment. In the VBE, you are presented with two items, General and Worksheet. General is the

declaration section when you can declare some global variables. Worksheet is the object where you

can write some VBA code to interact with it. The current active worksheet is sheet1(the name

assigned to Worksheet1) as only one worksheet is available, as seen on the right section of the

VBE, as shown in Figure 1.9.

Figure 1.9​ The Visual Basic Editor

If you add another worksheet to the workbook, the VBE will shows two worksheets, sheet1 and

sheet2, as shown in Figure 1.10

Figure 1.10

When you click the Worksheet, an event procedure will appear, as shown below:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

End Sub

A worksheet has many events associated with it (for that matter any Excel VBA objects has events

associated with them). The default event is ​SelectionChange ​, as shown in the event procedure

above. To view more events associated with the WorkSheet, click on the small inverted triangle on

the top right corner of VBE, you will see a drop-down list of events, as shown in Figure 1.11.

Figure 1.11​ The Worksheet Events

Now let us enter some code into the event procedure, as follows:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

 MsgBox ("You have changed your selection")

 End Sub

This code means whenever you click on another cell of the Worksheet, the message " You have

changed your selection" message will appear, as shown in Figure 1.12.

Figure 1.12

You should proceed to save your Excel Workbook before your work is lost. Remember to save your

file with the extension xlsm, which means Excel Macro Enabled Workbook, otherwise your VBA will

not run when you open it the next time.

Figure 1.13​ Saving File with Extension xlsm

In addition, Visual Basic Editor also allow you to insert modules and UserForms to build more

advance VBA. Usually the module allows you to develop customized functions whereas the

UserForm allows you to build more powerful applications. We will discuss module and UserForm in a

later chapter.

1.2.3 Creating Macros

You can also learn Excel VBA 365 programming by creating and editing macros. Macro​ is a record

and playback tool that records and plays back Excel worksheet activities performed by the

user. Macros save time as they automate repetitive tasks. It is a programming code that runs in

an Excel VBA environment. You can edit a macro as well as creating new macros using Visual Basic

syntaxes.

To record a macro, click on the Record Macro button in the Developer environment, as shown in

Figure 1.14

Figure 1.14

Upon clicking the Record Macro button, a dialog box will appear and prompts you to enter the macro

name. The macro name cannot have space between characters, underscore is allowed. Following

are a few rules in naming a macro:

● Must start with a letter or underscore

● Space is not allowed

● Does not conflict with existing names in the workbook

Figure 1.15

If you did not follow the rules, the dialog as shown in Figure 1.16 will appear.

Figure 1.16

Let us create a macro named Test_Macro. Next, click OK to start recoding the macro. Perform some

activities on the worksheet like entering some numbers and add those numbers, then stop the macro

recording.

To view the macro you have just created, click the Macros button and you can see the newly created

macro as shown in Figure 1.17. You can run, edit or delete the macro.

Figure 1.17

Let us edit the macro. When you click on the Edit button, you will be able to see the macro code in

the VBE, as shown in Figure 1.18. The code is the same as the code in a VB sub procedure which

starts with a Sub keyword and an End Sub keyword.

Figure 1.18

Example 1.3 Creating a Macro

Let us create a macro from scratch instead of recoding a macro. To create a macro, click on Macros

button and type in a name, as shown in Figure 1.19.

Figure 1.19

Click create to enter the VBE, and type come codes as shown in Figure 1.20.

Figure 1.20

The macro code is using the VB syntaxes. In the macro, we declared a variable rng to store the

range value. By using the keyword With and the Range method, the macro formats the targeted

range of cells using the font properties, the interior object and the color property. The macro will also

populate the cells with a value of 100. We shall learn more about object and properties in later

lessons. Save the macro and then click the run (a little green triangle on the tool bar) button or press

F5 to run the macro. A dialog will appear prompting you to run, edit or delete the macro as shown in

Figure 1.21.

Figure 1.21

Choose Run to execute the macro and you go back to the worksheet to see the results, as shown in

Figure 1.22

Figure 1.22

Example 1.4 Creating a Salary Calculator

This is a macro that calculates the salary based on the wage and hours worked.

Sub Cal_Salary() ​'macro name
 salary 8, 100

End Sub

Sub salary(wage As Single, hours As Single) ​'sub procedure
 MsgBox "Your salary is " & wage * hours

End Sub

When you run the macro, it will call the sub procedure with two arguments, i.e. wage and hours. The

values specified by the macro will be passed to the sub procedure to compute the salary. The output

is as shown in Figure 1.23

Figure 1.23

Example 1.5 Creating the Macro that Add Two Numbers

This macro adds two numbers input by the user via input boxes and present the sum in a message

dialog.

Sub Cal_Sum()

Dim x As Single, y As Single

 x = InputBox("Enter first number")

 y = InputBox("Enter second number")

 sum x, y

End Sub

Sub sum(a As Single, b As Single)

 MsgBox ("sum=" & a + b)

End Sub

The outputs are shown in Figure 1.24, Figure 1.25 and Figure 1.26

Figure 1.24

Figure 1.25

Figure 1.26

Example 1.6 A Macro that Populates Cells using the For…Next Loop

This macro employs a For…Next loop to populate a range of cells on the worksheet. (you will learn

more about For…Next loop in a later chapter.)

Sub Loop_macro()

Dim i, j As Integer

For i = 1 To 10

For j = 1 To 5

 Cells(i, j).Value = i + j

Next

Next

End Sub

When you run the program, the cells in the range A1:E10 will be populated, as shown in Figure 1.27

Figure 1.27

Example 1.7 A Macro that Populates the Cells with Characters using the Chr() Function.

This macro generates random characters based on the Chr() function and the ASCII codes.

Sub Random_Chr()

Dim m As Integer

For i = 2 To 6

For j = 2 To 6

m = Int(26 * Rnd) + 65

Sheet1.Cells(i, j) = Chr(m)

Next

Next

End Sub

The output is as shown in Figure 1.28

Figure 1.28

1.3 The Excel VBA 365 Code

Writing Excel VBA 365 code is like writing code in Visual Basic 6, which means you can use

syntaxes like that of Visual Basic 6. However, there are some syntaxes specifically reserved for MS

Excel, like the object called ​Range​. ​Range ​is the object that specifies the value of a cell or a range of

cells in MS Excel worksheet. The syntax of ​Range ​is as follows:

Range("cell Name").Value=K

 or

Range("Range of Cells").Value=K

Value is the property of the Range object and k is a numeric value or a string.

Example 1.8 Populating a Cell using the Value Property of Range

Private Sub CommandButton1_Click ()

Range ("A1").Value= "Excel VBA 365"

End Sub

Running the code will fill cell A1 with the text “Excel VBA”. You can also use Range without the

Value property, as shown in Example 1.3.

Example 1.9 Coloring the Cells with the Color Property

In this example, clicking the command button will fill cell A1 to C6 with the value of 100, change its

background color to blue and its font color to yellow.

Private Sub CommandButton1_Click ()

Range("A1:C6")=100

Range("A1:C6").Interior.Color = vbBlue

Range("A1:C6").Font.Color = vbYellow

End Sub

The output

Figure 1.14

Example 1.10 Adding Numbers Using the Do... Loop

This example apply the ​Do Loop​ to populate ​cells(1,1)​ to ​cells(6,3)​ with numbers that
follow the formula specified in the code. For example, when i=2, the value of ​cells(2,2)​ is
2+2=4. On top of that, it also set the background for the specified range to yellow and the font
color to red.
Private Sub CommandButton1_Click()

i = 1

Do

Cells(i, 1) = i

Cells(i, 2) = i + 1

Cells(i, 3) = i + 2

i = i + 1

Loop Until i > 6

Range("A1:C6").Interior.Color = vbYellow

Range(Cells(1, 1), Cells(6, 3)).Font.Color = vbRed

End Sub

The output is as shown in Figure 1.15

Figure 1.15

Example 1.11 A Macro that Accepts Inputs and Add Numbers

This is a macro that accepts inputs from the user and calculate the sum. When you run the macro,
the user will be prompted to enter two numbers via two input boxes, then sum them up.
Sub Cal_Sum()

Dim x As Single, y As Single

 x = InputBox("Enter first number")

 y = InputBox("Enter second number")

 sum x, y

End Sub

Sub sum(a As Single, b As Single)

 MsgBox ("sum=" & a + b)

End Sub

When you run the macro, two input boxes will appear to alert the user to enter two numbers, then
present the answer via a dialog message, as shown in Figure 1.16, Figure 1.17 and Figure 1.18.

1.4 Errors Handling

Errors handling is an integral part of coding in Excel VBA 365. Errors often occur when the user
enter incorrect values into a cell of an Excel worksheet. For example, an error occurs when
instruct the computer to divide a number by zero.

Another example is the user might enter a text (string) to a box that is designed to handle only
numeric values, the computer will not be able to perform an arithmetic calculation for text,
therefore, will create an error. These errors are known as synchronous errors.
Writing errors handling code should be considered a good practice for Excel VBA 365
programmers, so do not try to finish a program fast by omitting the errors handling code. However,
there should not be too many errors handling code in the program as it creates problems for the
programmer to maintain and troubleshoot the program later. Fortunately, we can write Excel VBA
365 code to handle those errors efficiently.

1.4.1 Writing the Errors Handling Code

The syntax for errors handling is
On Error GoTo program_label

where program_label is the section of code that is designed by the programmer to handle the
error committed by the user. Once an error is detected, the program will jump to the
program_label section for error handling. You also need to add the statement Exit Sub to prevent
the program from jumping to error handling section even though the inputs were correct.

Example 1.12 Catching Error for Invalid Division

Private Sub CommandButton1_Click()

On Error GoTo err_handler

 num1 = InputBox("Enter first number")

 num2 = InputBox("Enter second number")

 ​MsgBox num1 / num2
Exit Sub

err_handler:

 MsgBox "Invalid division, please try again"

End Sub

The program will display the error message “Invalid division, please try again” if the user enters
letters instead of numbers or enter the second number as zero, as shown in Figure 1.16

Figure 1.16

Example 1.13 Nested Errors Handling

By referring to Example 1.6, it is better to alert the user the types of error he or she has committed,

such as entering non-numeric data like letters or enter zero as denominator. It should be placed in

the first place as soon as the user input something in the input box. And the error handler label

error_handler1 for this error should be placed after the​ ​error_handler2 label. This means the second

error handling procedure is nested within the first error handling procedure. Notice that you must put

an Exit Sub for the second error handling procedure to prevent to execute the first error handling

procedure again. The code is as follow:

Private Sub CommandButton2_Click()

Dim firstNum, secondNum As Double

On Error GoTo error_handler1

 firstNum = InputBox("Enter first number")

 secondNum = InputBox("Enter second number")

On Error GoTo error_handler2

MsgBox firstNum / secondNum

Exit Sub ​'To prevent error handling when the inputs are valid

error_handler2:

MsgBox " Error!You attempt to divide a number by zero!Try again!"

 Exit Sub

error_handler1:

 MsgBox " You are not entering a number! Try again!"

End Sub

Figure 1.17

Figure 1.18

Additionally, you can use the keyword Resume Next to prevent error message from appearing and

branch back to the section of the program where error occurred.

Private Sub CommandButton1_Click()

On Error Resume Next

 num1 = InputBox("Enter first number")

 num2 = InputBox("Enter second number")

 MsgBox num1 / num2

End Sub

Chapter 2 Working with Variables

2.1 The Concept of Variables

Variables are like mailboxes in the post office. The content of the variables changes every now and

then, just like the mailboxes. In computer programming, variables are areas allocated by the

computer memory to store data. According to Wikipedia:

"

A variable is a storage address identified by a ​memory address​ paired with an associated ​symbolic

name​, which contains some known or unknown value. The variable name is the usual way

to ​reference​ the stored value, in addition to referring to the variable itself. This separation of name

and content allows the name to be used independently of the exact information it represents. The

identifier in computer ​source code​ can be ​bound​ to a ​value​ during ​run time​, and the value of the

variable may thus change during ​program execution​"

2.2 Variable Names

Like the mailboxes, each variable must be given a name. To name a variable in Excel VBA 365, you

must follow the following set of rules:

● It must be less than 255 characters

● No spacing is allowed

● It must not begin with a number

● Period is not permitted

● Cannot use exclamation mark (!), or the characters @, &, $, #

● Cannot repeat names within the same level of scope.

Examples of valid and invalid variable names are displayed in Table 2.1

Table 2.1 Examples of valid and invalid variable names

Valid Name Invalid Name

My_Car My.Car

ThisYear 1NewBoy

Long_Name_Can_beUSE He&HisFather *& is not acceptable

Group88 Student ID * Space not allowed

2.3 Declaring Variables

In Excel VBA 365, we must declare the variables before using them. We declare a variable by

assigning a name and a data type. Excel VBA 365 data types can be divided into two types, the

numeric data types and the non-numeric data types.

2.2.1 Numeric Data Types

Numeric data types are types of data that consist of numbers. In Excel VBA 365, the numeric data

are divided into 7 types as summarized in Table 2.2.

Table 2.2 Numeric Data Types

Type Storage Range of Values

Byte 1 byte 0 to 255

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,648

Single 4 bytes -3.402823E+38 to -1.401298E-45 for negative values
1.401298E-45 to 3.402823E+38 for positive values.

Double 8 bytes -1.79769313486232e+308 to -4.94065645841247E-324 for negative
values
4.94065645841247E-324 to 1.79769313486232e+308 for positive values.

Currency 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

Decimal 12 bytes +/- 79,228,162,514,264,337,593,543,950,335 if no decimal is use
+/- 7.9228162514264337593543950335 (28 decimal places).

2.2.2 Non-numeric Data Types

Non-numeric data types are data that cannot be manipulated using arithmetic operators. They

comprise string, date, Boolean and more, as summarized in Table 2.3

Table 2.3 Non-Numeric Data Types

Data Type Storage Range

String(fixed length) Length of string 1 to 65,400 characters

String(variable length) Length + 10 bytes 0 to 2 billion characters

Date 8 bytes January 1, 100 to December 31, 9999

Boolean 2 bytes True or False

Object 4 bytes Any embedded object

Variant(numeric) 16 bytes Any value as large as Double

Variant(text) Length+22 bytes Same as variable-length string

You may declare the variables implicitly or explicitly. For example, ​sum=text1.text​ means that the

variable sum is declared implicitly and ready to receive the input in ​Textbox1​. For explicit

declaration, variables are declared in the general section of the code window using the ​Dim

statement. The syntax is as follows:

Dim variableName as DataType

Example 2.1 Declaration of Different Data Types

Dim password As String

Dim yourName As String

Dim firstnum As Integer

Dim secondnum As Integer

Dim total As Integer

Dim birthDay As Date

Dim test As boolean

Dim earning As currency

You may also combine the variables into one line, separating each variable with a comma.

Dim password As String, yourName As String, firstnum As Integer.

If the data type is not specified, Excel VBA 365 will automatically declare the variable as a Variant.

For string declaration, there are two possible formats, one for the variable-length string and another

for the fixed-length string. For the variable-length string, just use the same syntax as Example 2.1

above. However, for the fixed-length string, you must use the syntax as shown below:

Dim VariableName as String * n

n defines the number of characters the string can hold. For example,

Dim yourName as String * 10

mean yourName can hold no more than 10 Characters.

Example 2.2 Creating a Salary Calculator Using If… Then…Else

This is a payroll app that calculate the salary based on wage per hour and hours worked. In this
example, we declared four types of variables, namely the string, date, currency and Boolean. The
declaration ​Dim college As String * 10 ​implies that​ t​he variable college can only holds 10
characters. In addition, we use the ​If…Then…Else ​statement to determine whether the employee
entitle a promotion.

The code

Private Sub CommandButton1_Click()

Dim yourName As String

Dim college As String * 10

Dim birthDay As Date

Dim workhour As Single

Dim wage As Currency

Dim salary As Currency

Dim promotion As Boolean

 yourName = "Adam"

 college = "John Hopkin University"

 birthDay = "1 April 1980"

 workhour = 160

 wage = 8

 salary = workhour * wage

If workhour > 160 Then

 promotion = True

Else

 promotion = False

End If

 Cells(3, 3) = yourName

 Cells(4, 3) = college

 Cells(5, 3) = birthDay

 Cells(6, 3) = workhour

 Cells(7, 3) = wage

 Cells(8, 3) = salary

 Cells(9, 3) = promotion

End Sub

The output is as seen in Figure 2.1

Figure 2.1

You can notice that the College name has been truncated to just 10 characters (including spacing).

2.2 Option Explicit

The keyword ​Option Explicit​ in Excel VB365 programming​ ​is to track errors in the usage of

variable. For example, if we commit a typo, Excel VBA 365 will pop up an error message “Variable

not defined”. Indeed, ​Option Explicit​ forces the programmer to declare every variable using the

Dim​ keyword. It is a good practice to use​ Option Explicit ​because it will prevent the incorrect

use of variable names due to typing errors, especially when the program gets larger. Using​ Option

Explicit​ save time in debugging.

When​ Option Explicit​ is included in the program code, every variable must be declared using

the​ Dim​ keyword. Any variable that is not declared or wrongly typed will produce the “Variable not

defined” error. The error must be corrected before the program can continue to run.

Example 2.3 Using Option Explicit to Catch Typo Errors

This example uses the Option Explicit keyword and it demonstrates how a typo is being tracked.

Option Explicit
Private Sub CommandButton1_Click()
Dim YourName As String
Dim password As String
YourName = "John"
password = 12345
Cells(1, 2) = YourNam
Cells(1, 3) = password
End Sub

The typo is ​YourNam​ and so the error message ‘variable not defined” will be displayed and the

program is suspended, as shown in Figure 2.2. The error Yournam will also be highlighted as shown

in Figure 2.3.

Figure 2.2

Figure 2.3 ​Error message due to typo error

2.3 Assigning Values to the Variables

After declaring several variables with the ​Dim ​statements, we can assign values to them. The syntax

of an assignment is

Variable=Expression

The variable can be a declared variable or a control property value. The expression can be a

mathematical expression, a number, a string, a Boolean value (true or false) and more. Here are

some examples:

firstNumber=100
secondNumber=firstNumber-99
userName="John Lyan"
userpass.Text = password
Label1.Visible = True
Command1.Visible = False
ThirdNumber = Val(usernum1.Text)
total = firstNumber + secondNumber+ThirdNumber

2.4 Performing Arithmetic Operations

To compute numeric values, we shall use arithmetic operators. In Excel VBA 365, the symbols for

arithmetic operators are different from normal mathematical operators except for + and -. For

example, multiplication is * and division is /. Besides. we must differentiate between / and \, where /

is a normal division whilst \ is an integer division. Integer division \ discards the decimals. For

example, 27\5 is 5. The Excel VBA 365 arithmetic operators as shown in Table 2.3.

Table 2.3 Arithmetic Operators

Operator Mathematical function Example

^ Exponential 2^4=16

* Multiplication 4*3=12

/ Division 12/4=3

Mod Modulus 15 Mod 4=3

\ Integer Division 19\4=4

+ or & String concatenation "Visual"&"Basic"="Visual Basic"

Example 2.4 Compute Examination Results

This example calculates the total mark and the average mark of an examination result. We declared

four variables as Single and another two variables as Double. In the code, we use

Worksheetfunction.sum​ to add the marks and ​Worksheetfunction.​c​ount ​to count the number

of subjects.

T​he Code
Option Explicit

Private Sub Cmd_Calculate_Click()

Dim mark1, mark2, mark3, mark4 As Single

Dim total, average As Double

mark1 = 60

mark2 = 75

mark3 = 85

mark4 = 54

Cells(2, 2) = mark1

Cells(3, 2) = mark2

Cells(4, 2) = mark3

Cells(5, 2) = mark4

total = WorksheetFunction.Sum(Range(Cells(2, 2), Cells(5, 2)))

average = total / WorksheetFunction.Count(Range(Cells(2, 2), Cells(5, 2)))

Cells(6, 2) = total

Cells(7, 2) = average

End Sub

The output is shown in Figure 2.4

Figure 2.4

Example 2.5 Concatenation of Strings

In this example, three variables are declared as string. The variable firstName and the variable

secondName will receive their data entered by the user into Cells(1,1) and cells(2,1) respectively.

You will notice that performing arithmetic operation on strings will result in the concatenation of the

strings, as shown in Figure 2.5.

Option Explicit

Private Sub CommandButton1_Click()

Dim secondName As String

Dim yourName As String

firstName = Cells(1,1)

secondName = Cells(2,1)

yourName = firstName + " " + secondName

Cells(3,1) = yourName

End Sub

Figure 2.5 Concatenation of Strings

2.5 Arrays

When we work with a single item in Excel VBA 365, we only need to declare one variable. However,

if we need to deal with a list of items, we need to declare an array of variables instead of using a

variable for each item. For example, if we need to enter 100 names, instead of declaring 100

different variables, we need to declare only one array.

An array is a group of variables with the same data type and name. We differentiate each item in the

array by using subscript, the index value of each item. For example, Studentname (1), Studentname

(2), Studentname (3) …Studentname(n)

2.5.1 Declaring an Array

We use the Dim statement to declare an array just as the way we declare a single variable. In Excel

VBA 365 we can have a one-dimensional array, two-dimensional array or even a multidimensional

array (up to 60)

2.5.2 One-Dimensional Array

The statement to declare a one-dimensional array in Excel VBA 365 is as follows:

Dim arrayName(index) as dataType or Dim arrayName(first index to last index) as

dataType

For example, the following statement declares an array that comprises 10 elements.

 ​Dim StudentName(10) as String
 Dim StudentName(1 to 10) as String

 Dim StudentMark(10) as Single

 Dim StudentMark(1 to 10) as Single

Example 2.6 Array of Names

In this example, we define an array StudentName comprising five names using the Dim keyword.

We include an InputBox to accept input from the user. We also use the For…Next loop to accept the

input five times and display the five names from cell A1 to cell E1. The code is as follows:

Private Sub CommandButton1_Click()

Dim StudentName(1 to 5) As String

 For i = 1 To 5

 StudentName(i) = InputBox(“Enter student Name”)

 Cells(i, 1) = StudentName(i)

 Next

End Sub

* You can also declare the array using ​Dim StudentName(5) As String​ When we run the

program, an input box will appear, as shown below. This input box will repeat five times and let the

user enter five names, as shown in Figure 2.6.

Figure 2.6

Five names will be displayed in the worksheet as shown in Figure 2.6

Figure 2.7

You can also declare more than one array on a single line. In Example 2.7, we declare three arrays

in a single line, separated by commas.

Example 2.7 Declare Arrays in a Single Line

Private Sub CommandButton1_Click()

Dim StudentName(3) As String, StudentID(3) As String, StudentMark(3) As Single

 For i = 1 To 3 StudentName(i) = InputBox(“Enter student Name”)

 StudentID(i) = InputBox(“Enter student ID”)

 StudentMark(i) = InputBox(“Enter student Mark”)

 Cells(i, 1) = StudentName(i)

 Cells(i, 2) = StudentID(i)

 Cells(i, 3) = StudentMark(i)

 Next

End Sub

When we run the program, three input boxes will appear consecutively to let the user enter the

student name, the student ID and then the student mark. The process will repeat three times until

the particulars of all three students have been entered. The three input boxes and the output images

are shown below:

Figure 2.8

Figure 2.9

Figure 2.10

The Output is shown in the Figure 2.11

Figure 2.11

2.5.3 Two-Dimensional Array

Multidimensional arrays are often needed when we are dealing with a more complex database,

especially those that handle a large amount of data. Data are usually organized and arranged in

table form; this is where the multidimensional arrays come into play. However, in this tutorial, we are

dealing only with the two-dimensional array. A two-dimensional array can be represented by a table

that contains rows and columns, where one index represents the rows and the other index represent

the columns.The statement to declare a two-dimensional array is

Dim arrayName (num1, num2) as datatype

Where num1 is the suffix of the first dimension of the last element and num2 is the suffix of the

second dimension of the last element in the array. The suffixes of the element in the array will start

with (0, 0) unless you set the Option Base to 1. In the case when the Option Base is set to 1, then

the suffixes of the element in the array will start with (1, 1). For example,

Dim Score (3, 3) as Integer

will create a two-dimensional array consists of 16 elements. These elements can be organized in a

table form as shown in the table below:

Table 2.1

Score(0,0) Score(0,1) Score(0,2) Score(0,3)

Score(1,0) Score(1,1) Score(1,2) Score(1,3)

Score(2,0) Score(2,1) Score(2,2) Score(2,3)

Score(3,0) Score(3,1) Score(3,2) Score(3,3)

If you set the option base to 1, then there will be only 9 elements, i.e from Score(1,1) to Score(3,3).

However, if you want the first element to start with suffixes (1,1) you can also use the following

format of declaration:

Dim Score(1 to 3, 1 to 3) as Integer

Example 2.8 Tracking the Performance of Salespersons

If a company wants to track the performance of 5 salespersons over a period of 2 days, you can

create a 5×2 array in Excel VBA 365, denoted by a 5X 2 table in a worksheet. Therefore, you can

write the following VBA code using a nested For loop.

Private Sub CommandButton1_Click()

Dim SalesPersonName As String

Dim SalesPersonID, Day As Integer

Dim SalesVolume(2 To 6, 2 To 3) As Double

For SalesPersonID = 2 To 6

SalesPersonName = InputBox("Enter Salesperson Name")

Cells(SalesPersonID, 1) = SalesPersonName

 For Day = 2 To 3

 SalesVolume(SalesPersonID, Day) = InputBox("Enter Sales Volume for day " & (Day

- 1))

 Cells(SalesPersonID, Day) = SalesVolume(SalesPersonID, Day)

 Next Day

 Next SalesPersonID

End Sub

When the user runs the program, the input box that will prompt the user to enter salesperson's

name, as shown in the Figure 2.12

Figure 2.12

Next, you will be asked to enter the sales volume for day 1 and day 2, as shown in Figure 2.13 and

Figure 2.14.

Figure 2.13

Figure 2.14

After entered data for five salespersons, you will obtain a table as shown in Figure 2.15

Figure 2.15

